over 80% of the world's ice-free land is at risk of profound
1 2 by 2100, a new study reveals. "
3, we would be leaving the world as we know it," says sebastian ostberg of the potsdam institute for climate impact research, germany. ostberg and collaborators studied the critical impacts of climate change on landscapes and have now published their results in earth system
4, an open access journal of the european geosciences union (egu). the researchers state in the article that "nearly no area of the world is free" from the risk of climate change transforming landscapes substantially, unless
mitigation(减轻,缓和) limits warming to around 2 degrees
5 above
preindustrial(工业化前的) levels.
ecosystem changes could include
boreal(北方的) forests being transformed into
6 7(热带稀树草原), trees growing in the freezing arctic
8 or even a dieback of some of the world's rainforests. such profound
9 of land
10 have the potential to affect food and water security, and hence impact human
11 just like sea level rise and direct damage from extreme weather events.
the new earth system dynamics study indicates that up to 86% of the remaining natural land ecosystems worldwide could be at risk of major change in a business-as-usual
12 (see note). this assumes that the global mean temperature will be 4 to 5 degrees warmer at the end of this century than in pre-industrial times -- given many countries'
13 to commit to
14 15 cuts, such warming is not out of the question by 2100.
"the research shows there is a large difference in the risk of major ecosystem change depending on whether humankind continues with business as usual or if we
16 for effective climate change mitigation," ostberg points out.
but even if the warming is limited to 2 degrees, some 20% of land ecosystems -- particularly those at high altitudes and high
17 -- are at risk of moderate or major transformation, the team reveals.
the researchers studied over 150 climate
18, looking at ecosystem changes in nearly 20 different climate models for various degrees of global warming. "our study is the most comprehensive and internally consistent analysis of the risk of major ecosystem change from climate change at the global scale," says wolfgang lucht, also an author of the study and co-chair of the research
19 earth system analysis at the potsdam institute for climate impact research.
few previous studies have looked into the global impact of raising temperatures on ecosystems because of how complex and interlinked these systems are. "comprehensive theories and computer models of such complex systems and their dynamics up to the global scale do not exist."
to get around this problem, the team measured simultaneous changes in the biogeochemistry of terrestrial vegetation and the relative abundance of different vegetation species. "any significant change in the
20 biogeochemistry presents an
21 adaptation challenge, fundamentally destabilising our natural systems," explains ostberg.
the researchers defined a
22 to measure how far apart a future ecosystem under climate change would be from the present state. the parameter
23 changes in variables such as the vegetation structure (from trees to grass, for example), the carbon stored in the soils and vegetation, and freshwater availability. "our
24 of ecosystem change is able to measure the combined effect of changes in many ecosystem processes, instead of looking only at a single process," says ostberg.
he hopes the new results can help inform the
25 26 on climate mitigation targets, "as well as planning adaptation to unavoidable change."